

 Navigation

 	
 index

 	
 next |

 	Convex.jl 0.1 documentation

Convex.jl - Convex Optimization in Julia

Convex.jl is a Julia package for Disciplined Convex Programming [http://dcp.stanford.edu/] (DCP).
Convex.jl makes it easy to describe optimization problems in a natural, mathematical syntax,
and to solve those problems using a variety of different (commercial and open-source) solvers.
Convex.jl can solve

	linear programs

	mixed-integer linear programs and mixed-integer second-order cone programs

	dcp-compliant convex programs including
	second-order cone programs (SOCP)

	exponential cone programs

	semidefinite programs (SDP)

Convex.jl supports many solvers, including Mosek [https://github.com/JuliaOpt/Mosek.jl], Gurobi [https://github.com/JuliaOpt/gurobi.jl], ECOS [https://github.com/JuliaOpt/ECOS.jl], SCS [https://github.com/karanveerm/SCS.jl] and GLPK [https://github.com/JuliaOpt/GLPK.jl], through the MathProgBase [http://mathprogbasejl.readthedocs.org/en/latest/] interface.

Note that Convex.jl was previously called CVX.jl. This package is under active development; we welcome bug reports and feature requests. For usage questions, please contact us via the JuliaOpt mailing list [https://groups.google.com/forum/#!forum/julia-opt].

In Depth Documentation:

	Installation

	Quick Tutorial

	Basic Types
	Variables

	Constants

	Expressions

	Constraints

	Objective

	Problem

	Supported Operations
	Linear Program Representable Functions

	Second-Order Cone Representable Functions

	Exponential Cone Representable Functions

	Semidefinite Program Representable Functions

	Exponential + SDP representable Functions

	Promotions

	Examples

	Solvers

	FAQ
	Where can I get help?

	How does Convex.jl differ from JuMP?

	Where can I learn more about Convex Optimization?

	Are there similar packages available in other languages?

	How does Convex.jl work?

	How do I cite this package?

	Optimizing in a Loop
	Memory Management

	Caching Expressions

	Warmstarts, Parameters, Fixing and Freeing Variables

	Advanced
	Dual Variables

	Warmstarting

	Fixing and freeing variables

	Credits

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

Installation

Installing Convex.jl is a one step process. Open up Julia and type

Pkg.update()
Pkg.add("Convex")

This does not install any solvers. If you don’t have a solver installed already, you will want to install a solver such as SCS [https://github.com/JuliaOpt/SCS.jl] by running

Pkg.add("SCS")

To solve certain problems such as mixed integer programming problems you will need to install another solver as well, such as GLPK [https://github.com/JuliaOpt/GLPKMathProgInterface.jl]. If you wish to use other solvers, please read the section on solvers.

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

Quick Tutorial

Consider a constrained least squares problem

\[\begin{split}\begin{array}{ll}
 \mbox{minimize} & \|Ax - b\|_2^2 \\
 \mbox{subject to} & x \geq 0
\end{array}\end{split}\]

with variable \(x\in \mathbf{R}^{n}\),
and problem data \(A \in \mathbf{R}^{m \times n}\), \(b \in \mathbf{R}^{m}\).

This problem can be solved in Convex.jl as follows:

Make the Convex.jl module available
using Convex

Generate random problem data
m = 4; n = 5
A = randn(m, n); b = randn(m, 1)

Create a (column vector) variable of size n x 1.
x = Variable(n)

The problem is to minimize ||Ax - b||^2 subject to x >= 0
This can be done by: minimize(objective, constraints)
problem = minimize(sumsquares(A * x - b), [x >= 0])

Solve the problem by calling solve!
solve!(problem)

Check the status of the problem
problem.status # :Optimal, :Infeasible, :Unbounded etc.

Get the optimum value
problem.optval

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

Basic Types

The basic building block of Convex.jl is called an expression, which can represent a variable, a constant, or a function of another expression. We discuss each kind of expression in turn.

Variables

The simplest kind of expression in Convex.jl is a variable. Variables in Convex.jl are declared using the Variable keyword, along with the dimensions of the variable.

Scalar variable
x = Variable()

Column vector variable
x = Variable(5)

Matrix variable
x = Variable(4, 6)

Variables may also be declared as having special properties, such as being

	(entrywise) positive: x = Variable(4, Positive())

	(entrywise) negative: x = Variable(4, Negative())

	integral: x = Variable(4, :Int)

	binary: x = Variable(4, :Bin)

	(for a matrix) being symmetric, with nonnegative eigenvalues (ie, positive semidefinite): z = Semidefinite(4)

Constants

Numbers, vectors, and matrices present in the Julia environment are wrapped automatically into a Constant expression when used in a Convex.jl expression.

Expressions

Expressions in Convex.jl are formed by applying any atom (mathematical function defined in Convex.jl) to variables, constants, and other expressions. For a list of these functions, see operations.
Atoms are applied to expressions using operator overloading. For example, 2+2 calls Julia’s built-in addition operator, while 2+x calls the Convex.jl addition method and returns a Convex.jl expression. Many of the useful language features in Julia, such as arithmetic, array indexing, and matrix transpose are overloaded in Convex.jl so they may be used with variables and expressions just as they are used with native Julia types.

Expressions that are created must be DCP-compliant.
More information on DCP can be found here [http://dcp.stanford.edu/].

x = Variable(5)
The following are all expressions
y = sum(x)
z = 4 * x + y
z_1 = z[1]

Convex.jl allows the values of the expressions to be evaluated directly.

x = Variable()
y = Variable()
z = Variable()
expr = x + y + z
problem = minimize(expr, x >= 1, y >= x, 4 * z >= y)
solve!(problem)

Once the problem is solved, we can call evaluate() on expr:
evaluate(expr)

Constraints

Constraints in Convex.jl are declared using the standard comparison operators <=, >=, and ==. They specify relations that must hold between two expressions. Convex.jl does not distinguish between strict and non-strict inequality constraints.

x = Variable(5, 5)
Equality constraint
constraint = x == 0
Inequality constraint
constraint = x >= 1

Matrices can also be constrained to be positive semidefinite.

x = Variable(3, 3)
y = Variable(3, 1)
z = Variable()
constrain [x y; y' z] to be positive semidefinite
constraint = ([x y; y' z] in :SDP)
or equivalently,
constraint = ([x y; y' z] ⪰ 0)

Objective

The objective of the problem is a scalar expression to be maximized or minimized by using maximize or minimize respectively. Feasibility problems can be expressed by either giving a constant as the objective, or using problem = satisfy(constraints).

Problem

A problem in Convex.jl consists of a sense (minimize, maximize, or satisfy), an objective (an expression to which the sense verb is to be
applied), and zero or more constraints that must be satisfied at the solution.
Problems may be constructed as

problem = minimize(objective, constraints)
or
problem = maximize(objective, constraints)
or
problem = satisfy(constraints)

Constraints can be added at any time before the problem is solved.

No constraints given
problem = minimize(objective)
Add some constraint
problem.constraints += constraint
Add many more constraints
problem.constraints += [constraint1, constraint2, ...]

A problem can be solved by calling solve!:

solve!(problem)

After the problem is solved, problem.status records the status returned by the optimization solver, and can be :Optimal, :Infeasible, :Unbounded, :Indeterminate or :Error.
If the status is :Optimal, problem.optval will record the optimum value of the problem.
The optimal value for each variable x participating in the problem can be found in x.value.
The optimal value of an expression can be found by calling the evaluate() function on the expression as follows: evaluate(expr).

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

Operations

Convex.jl currently supports the following functions.
These functions may be composed according to the DCP [http://dcp.stanford.edu] composition rules to form new convex, concave, or affine expressions.
Convex.jl transforms each problem into an equivalent cone program [http://mathprogbasejl.readthedocs.org/en/latest/conic.html] in order to pass the problem to a specialized solver.
Depending on the types of functions used in the problem, the conic constraints may include linear, second-order, exponential, or semidefinite constraints, as well as any binary or integer constraints placed on the variables.
Below, we list each function available in Convex.jl organized by the (most complex) type of cone used to represent that function,
and indicate which solvers may be used to solve problems with those cones.
Problems mixing many different conic constraints can be solved by any solver that supports every kind of cone present in the problem.

In the notes column in the tables below, we denote implicit constraints imposed on the arguments to the function by IC,
and parameter restrictions that the arguments must obey by PR.
(Convex.jl will automatically impose ICs; the user must make sure to satisfy PRs.)

Linear Program Representable Functions

An optimization problem using only these functions can be solved by any LP solver.

	operation
	description
	vexity
	slope
	notes

	x+y or x.+y
	addition
	affine
	increasing
	none

	x-y or x.-y
	subtraction
	affine
	increasing in
\(x\)

decreasing in
\(y\)

	none

none

	x*y
	multiplication
	affine
	increasing if

constant term
\(\ge 0\)

decreasing if

constant term
\(\le 0\)

not monotonic

otherwise

	PR: one argument is constant

	x/y
	division
	affine
	increasing
	PR: \(y\) is scalar constant

	x .* y
	elemwise multiplication
	affine
	increasing
	PR: one argument is constant

	x[1:4, 2:3]
	indexing and slicing
	affine
	increasing
	none

	diag(x, k)
	\(k\)-th diagonal of
a matrix
	affine
	increasing
	none

	diagm(x)
	construct diagonal
matrix
	affine
	increasing
	PR: \(x\) is a vector

	x'
	transpose
	affine
	increasing
	none

	vec(x)
	vector representation
	affine
	increasing
	none

	dot(x,y)
	\(\sum_i x_i y_i\)
	affine
	increasing
	PR: one argument is constant

	vecdot(x,y)
	dot(vec(x),vec(y))
	affine
	increasing
	PR: one argument is constant

	sum(x)
	\(\sum_{ij} x_{ij}\)
	affine
	increasing
	none

	sum(x, k)
	sum elements across

dimension \(k\)

	affine
	increasing
	none

	sumlargest(x, k)
	sum of \(k\) largest

elements of \(x\)

	convex
	increasing
	none

	sumsmallest(x, k)
	sum of \(k\) smallest

elements of \(x\)

	concave
	increasing
	none

	dotsort(a, b)
	dot(sort(a),sort(b))
	convex
	increasing
	PR: one argument is constant

	reshape(x, m, n)
	reshape into
\(m \times n\)
	affine
	increasing
	none

	minimum(x)
	\(\min(x)\)
	concave
	increasing
	none

	maximum(x)
	\(\max(x)\)
	convex
	increasing
	none

	[x y] or [x; y]

hcat(x, y) or

vcat(x, y)

	stacking
	affine
	increasing
	none

	trace(x)
	\(\mathrm{tr}
\left(X \right)\)
	affine
	increasing
	none

	conv(h,x)
	\(h \in
\mathbb{R}^m\)

\(x \in
\mathbb{R}^m\)

\(h*x
\in \mathbb{R}^{m+n-1}\)

entry \(i\) is
given by

\(\sum_{j=1}^m
h_jx_{i-j}\)

	affine
	increasing if
\(h\ge 0\)

decreasing if
\(h\le 0\)

not monotonic

otherwise

	PR: \(h\) is constant

	min(x,y)
	\(\min(x,y)\)
	concave
	increasing
	none

	max(x,y)
	\(\max(x,y)\)
	convex
	increasing
	none

	pos(x)
	\(\max(x,0)\)
	convex
	increasing
	none

	neg(x)
	\(\max(-x,0)\)
	convex
	decreasing
	none

	invpos(x)
	\(1/x\)
	convex
	decreasing
	IC: \(x>0\)

	abs(x)
	\(\left|x\right|\)
	convex
	increasing on
\(x \ge 0\)

decreasing on
\(x \le 0\)

	none

Second-Order Cone Representable Functions

An optimization problem using these functions can be solved by any SOCP solver (including ECOS, SCS, Mosek, Gurobi, and CPLEX).
Of course, if an optimization problem has both LP and SOCP representable functions, then any solver that can solve both LPs and SOCPs can solve the problem.

	operation
	description
	vexity
	slope
	notes

	norm(x, p)
	\((\sum x_i^p)^{1/p}\)
	convex
	increasing on
\(x \ge 0\)

decreasing on
\(x \le 0\)

	PR: p >= 1

	vecnorm(x, p)
	\((\sum x_{ij}^p)^{1/p}\)
	convex
	increasing on
\(x \ge 0\)

decreasing on
\(x \le 0\)

	PR: p >= 1

	quadform(x, P)
	\(x^T P x\)
	convex in
\(x\)

affine in
\(P\)

	increasing on
\(x \ge 0\)

decreasing on
\(x \le 0\)

increasing in
\(P\)

	PR: either \(x\) or
\(P\)

must be constant;
if \(x\) is not
constant, then \(P\)
must be symmetric and
positive semidefinite

	quadoverlin(x, y)
	\(x^T x/y\)
	convex
	increasing on
\(x \ge 0\)

decreasing on
\(x \le 0\)

decreasing in
\(y\)

	IC: \(y > 0\)

	sumsquares(x)
	\(\sum x_i^2\)
	convex
	increasing on
\(x \ge 0\)

decreasing on
\(x \le 0\)

	none

	sqrt(x)
	\(\sqrt{x}\)
	concave
	decreasing
	IC: \(x>0\)

	square(x), x^2
	\(x^2\)
	convex
	increasing on
\(x \ge 0\)

decreasing on
\(x \le 0\)

	none

	geomean(x, y)
	\(\sqrt{xy}\)
	concave
	increasing
	IC: \(x\ge0\),
\(y\ge0\)

	huber(x)

huber(x, M)

	\(\begin{cases}
x^2 &|x| \leq
M \\
2M|x| - M^2
&|x| > M
\end{cases}\)
	convex
	increasing on
\(x \ge 0\)

decreasing on
\(x \le 0\)

	PR: \(M>=1\)

Exponential Cone Representable Functions

An optimization problem using these functions can be solved by any exponential cone solver (SCS).

	operation
	description
	vexity
	slope
	notes

	logsumexp(x)
	\(\log(\sum_i \exp(x_i))\)
	convex
	increasing
	none

	exp(x)
	\(\exp(x)\)
	convex
	increasing
	none

	log(x)
	\(\log(x)\)
	concave
	increasing
	IC: \(x>0\)

	entropy(x)
	\(\sum_{ij}
-x_{ij} \log (x_{ij})\)
	concave
	not monotonic
	IC: \(x>0\)

	logisticloss(x)
	\(\log(1 + \exp(x_i))\)
	convex
	increasing
	none

Semidefinite Program Representable Functions

An optimization problem using these functions can be solved by any SDP solver (including SCS and Mosek).

	operation
	description
	vexity
	slope
	notes

	nuclearnorm(x)
	sum of singular values of \(x\)
	convex
	not monotonic
	none

	operatornorm(x)
	max of singular values of \(x\)
	convex
	not monotonic
	none

	lambdamax(x)
	max eigenvalue of \(x\)
	convex
	not monotonic
	IC: x is positive semidefinite

	lambdamin(x)
	min eigenvalue of \(x\)
	concave
	not monotonic
	IC: x is positive semidefinite

	matrixfrac(x, P)
	\(x^TP^{-1}x\)
	convex
	not monotonic
	IC: P is positive semidefinite

Exponential + SDP representable Functions

An optimization problem using these functions can be solved by any solver that supports exponential constraints and semidefinite constraints simultaneously (SCS).

	operation
	description
	vexity
	slope
	notes

	logdet(x)
	log of determinant of \(x\)
	concave
	increasing
	IC: x is positive semidefinite

Promotions

When an atom or constraint is applied to a scalar and a higher dimensional variable, the scalars are promoted. For example, we can do max(x, 0) gives an expression with the shape of x whose elements are the maximum of the corresponding element of x and 0.

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

Examples

	Basic usage [http://nbviewer.ipython.org/github/JuliaOpt/Convex.jl/blob/master/examples/basic_usage.ipynb]

	Control [http://nbviewer.ipython.org/github/JuliaOpt/Convex.jl/blob/master/examples/control.ipynb]

	Tomography [http://nbviewer.ipython.org/github/JuliaOpt/Convex.jl/blob/master/examples/tomography/tomography.ipynb]

	Time series [http://nbviewer.ipython.org/github/JuliaOpt/Convex.jl/blob/master/examples/time_series/time_series.ipynb]

	Section allocation [http://nbviewer.ipython.org/github/JuliaOpt/Convex.jl/blob/master/examples/section_allocation/section_allocation.ipynb]

	Binary knapsack [http://nbviewer.ipython.org/github/JuliaOpt/Convex.jl/blob/master/examples/binary_knapsack.ipynb]

	Entropy maximization [http://nbviewer.ipython.org/github/JuliaOpt/Convex.jl/blob/master/examples/max_entropy.ipynb]

	Logistic regression [http://nbviewer.ipython.org/github/JuliaOpt/Convex.jl/blob/master/examples/logistic_regression.ipynb]

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

Solvers

Convex.jl transforms each problem into an equivalent cone program [http://mathprogbasejl.readthedocs.org/en/latest/conic.html] in order to pass the problem to a specialized solver.
Depending on the types of functions used in the problem, the conic constraints may include linear, second-order, exponential, or semidefinite constraints, as well as any binary or integer constraints placed on the variables.

By default, Convex.jl does not install any solvers. Many users use the solver SCS [https://github.com/JuliaOpt/SCS.jl], which is able to solve problems with linear, second-order cone constraints (SOCPs), exponential constraints and semidefinite constraints (SDPs).
Any other solver in JuliaOpt [http://www.juliaopt.org/] may also be used, so long as it supports the conic constraints used to represent the problem.
Most other solvers in the JuliaOpt ecosystem can be used to solve (mixed integer) linear programs (LPs and MILPs).
Mosek and Gurobi can be used to solve SOCPs (even with binary or integer constraints), and Mosek can also solve SDPs.
For up-to-date information about solver capabilities, please see the table here [http://www.juliaopt.org/]
describing which solvers can solve which kind of problems.

Installing these solvers is very simple. Just follow the instructions in the documentation for that solver.

To use a specific solver, you can use the following syntax

solve!(p, GurobiSolver())
solve!(p, MosekSolver())
solve!(p, GLPKSolverMIP())
solve!(p, GLPKSolverLP())
solve!(p, ECOSSolver())
solve!(p, SCSSolver())

(Of course, the solver must be installed first.) For example, we can use GLPK to solve a MILP

using GLPKMathProgInterface
solve!(p, GLPKSolverMIP())

You can set or see the current default solver by

get_default_solver()
using Gurobi
set_default_solver(GurobiSolver()) # or set_default_solver(SCSSolver(verbose=0))
Now Gurobi will be used by default as a solver

Many of the solvers also allow options to be passed in. More details can be found in each solver’s documentation.

For example, if we wish to turn off printing for the SCS solver (ie, run in quiet mode), we can do so by

using SCS
solve!(p, SCSSolver(verbose=false))

If we wish to increase the maximum number of iterations for ECOS or SCS, we can do so by

using ECOS
solve!(p, ECOSSolver(maxit=10000))
using SCS
solve!(p, SCSSolver(max_iters=10000))

To turn off the problem status warning issued by Convex when a solver is not able to solve a problem to optimality, use the keyword argument verbose=false of the solve method, along with any desired solver parameters:

solve!(p, SCSSolver(verbose=false), verbose=false)

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

FAQ

	Where can I get help?

	How does Convex.jl differ from JuMP?

	Where can I learn more about Convex Optimization?

	Are there similar packages available in other languages?

	How does Convex.jl work?

	How do I cite this package?

Where can I get help?

For usage questions, please contact us via the JuliaOpt mailing list [https://groups.google.com/forum/#!forum/julia-opt].
If you’re running into bugs or have feature requests, please use the Github Issue Tracker [https://github.com/JuliaOpt/Convex.jl/issues].

How does Convex.jl differ from JuMP?

Convex.jl and JuMP are both modelling languages for mathematical programming embedded in Julia, and both
interface with solvers via the MathProgBase interface, so many of the same solvers are available in both.
Convex.jl converts problems to a standard conic form. This approach requires (and certifies) that the problem
is convex and DCP compliant, and guarantees global optimality of the resulting solution.
JuMP allows nonlinear programming through an interface that learns about functions via their derivatives.
This approach is more flexible (for example, you can optimize non-convex functions), but can’t
guarantee global optimality if your function is not convex, or warn you if you’ve entered a non-convex formulation.

For linear programming, the difference is more stylistic. JuMP’s syntax is scalar-based and similar to AMPL and GAMS
making it easy and fast to create constraints by indexing and summation (like sum{x[i], i=1:numLocation}).
Convex.jl allows (and prioritizes) linear algebraic and functional constructions (like max(x,y) < A*z);
indexing and summation are also supported in Convex.jl, but are somewhat slower than in JuMP.
JuMP also lets you efficiently solve a sequence of problems when new constraints are added
or when coefficients are modified,
whereas Convex.jl parses the problem again whenever the solve! method is called.

Where can I learn more about Convex Optimization?

See the freely available book Convex Optimization [http://web.stanford.edu/~boyd/cvxbook/] by Boyd and Vandenberghe for general background on convex optimization.
For help understanding the rules of Disciplined Convex Programming, we recommend this DCP tutorial website [http://dcp.stanford.edu/].

Are there similar packages available in other languages?

Indeed! You might use CVXPY [http://www.cvxpy.org] in Python, or CVX [http://cvxr.com/] in Matlab.

How does Convex.jl work?

For a detailed discussion of how Convex.jl works, see our paper [http://www.arxiv.org/abs/1410.4821].

How do I cite this package?

If you use Convex.jl for published work, we encourage you to cite the software using the following BibTeX citation:

@article{convexjl,
 title = {Convex Optimization in {J}ulia},
 author ={Udell, Madeleine and Mohan, Karanveer and Zeng, David and Hong, Jenny and Diamond, Steven and Boyd, Stephen},
 year = {2014},
 journal = {SC14 Workshop on High Performance Technical Computing in Dynamic Languages},
 archivePrefix = "arXiv",
 eprint = {1410.4821},
 primaryClass = "math-oc",
}

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

Optimizing in a Loop

Memory Management

Convex uses a module-level dictionary to store the conic forms of every
variable and expression created in the same Julia session.
These variables and expressions persist even after they are out of scope.
If you create large numbers of variables inside a loop, this
dictionary can eat a considerable amount of memory.

To flush the memory, you can call

Convex.clearmemory()

This will remove every variable and expression you’ve formed before
from the memory cache, so that you’re starting as fresh as if you’d just
reimported Convex.

Caching Expressions

Better yet, take advantage of this cache of variables and expressions!
Create variables and expressions outside the loop, and reuse them
inside the loop as you tweak parameters. Doing this will allow Convex
to reuse the conic forms it has already calculated for previously used expressions.

For example, the following bad code will create a new instance of a variable
and of the expression square(x) for each value of i.
Don’t do this:

for i=1:10
 x = Variable()
 p = minimize(square(x), x >= i)
 solve!(p)
end

Contrast this with the following good code, which
will reuse the cached conic form for square(x) for each i,
reducing the memory footprint and speeding up the computation.
Do this instead:

x = Variable()
obj = square(x)
for i=1:10
 p = minimize(obj, x >= i)
 solve!(p)
end

Warmstarts, Parameters, Fixing and Freeing Variables

If you’re solving many problems of the same form, or many similar problems,
you may also want to use warmstarts, or to dynamically fix and free variables.
The former is particularly good for a family of problems related by a parameter;
the latter allows for easy implementation of alternating minimization for
nonconvex problems. See the Advanced Features section of the documentation for more information.

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Convex.jl 0.1 documentation

Advanced Features

Dual Variables

Convex.jl also returns the optimal dual variables for a problem. These are stored in the dual field associated with each constraint.

using Convex

x = Variable()
constraint = x >= 0
p = minimize(x, constraint)
solve!(p)

Get the dual value for the constraint
p.constraints[1].dual
or
constraint.dual

Warmstarting

If you’re solving the same problem many times with different values
of a parameter, Convex.jl can initialize many solvers with the solution
to the previous problem, which sometimes speeds up the solution time.
This is called a warm start.

To use this feature,
pass the optional argument warmstart=true to the solve! method.

initialize data
n = 1000
y = rand(n)
x = Variable(n)

first solve
lambda = 100
problem = minimize(sumsquares(y - x) + lambda * sumsquares(x - 10))
@time solve!(problem)

now warmstart
if the solver takes advantage of warmstarts,
this run will be faster
lambda = 105
@time solve!(problem, warmstart=true)

Fixing and freeing variables

Convex.jl allows you to fix a variable x to a value by calling the fix! method.
Fixing the variable essentially turns it into a constant.
Fixed variables are sometimes also called parameters.

fix(x, v) fixes the variable x to the value v.

fix(x) fixes x to the value x.value, which might be the value
obtained by solving another problem involving the variable x.

To allow the variable x to vary again, call free!(x).

Fixing and freeing variables can be particularly useful as a tool
for performing alternating minimization on nonconvex problems.
For example, we can find an approximate solution to a nonnegative matrix factorization problem
with alternating minimization as follows.
We use warmstarts to speed up the solution.

initialize nonconvex problem
n, k = 10, 1
A = rand(n, k) * rand(k, n)
x = Variable(n, k)
y = Variable(k, n)
problem = minimize(sum_squares(A - x*y), x>=0, y>=0)

initialize value of y
y.value = rand(k, n)
we'll do 10 iterations of alternating minimization
for i=1:10
 # first solve for x
 # with y fixed, the problem is convex
 fix!(y)
 solve!(problem, warmstart = i > 1 ? true : false)
 free!(y)

 # now solve for y with x fixed at the previous solution
 fix!(x)
 solve!(problem, warmstart = true)
 free!(x)
end

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Convex.jl 0.1 documentation

Credits

Currently, Convex.jl is developed and maintained by:

	Jenny Hong [http://www.stanford.edu/~jyunhong/]

	Karanveer Mohan [http://www.stanford.edu/~kvmohan/]

	Madeleine Udell [http://www.stanford.edu/~udell/]

	David Zeng [http://www.stanford.edu/~dzeng0/]

The Convex.jl developers also thank:

	the JuliaOpt [http://www.juliaopt.org/] team: Iain Dunning [http://iaindunning.com/], Joey Huchette [http://www.mit.edu/~huchette/] and Miles Lubin [http://www.mit.edu/~mlubin/]

	Stephen Boyd [http://www.stanford.edu/~boyd/], co-author of the book Convex Optimization [http://www.stanford.edu/~boyd/books.html]

	Steven Diamond [http://www.stanford.edu/~stevend2/], developer of CVXPY [https://github.com/cvxgrp/cvxpy] and of a DCP tutorial website [http://dcp.stanford.edu/] to teach disciplined convex programming.

	Michael Grant [http://www.cvxr.com/bio], developer of CVX [http://www.cvxr.com].

	John Duchi [http://www.stanford.edu/~jduchi] and Hongseok Namkoong for developing the representation of power cones in terms of SOCP constraints [https://github.com/JuliaOpt/Convex.jl/raw/master/docs/supplementary/rational_to_socp.pdf] used in this package.

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Convex.jl 0.1 documentation

Index

 Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Convex.jl 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Karanveer Mohan, Madeleine Udell, David Zeng and Jenny Hong.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

